• vllm-openllm-run-http-server

    流水账 周二

    玩了一下匹克球,运动量还可以,出了一身汗。

    用 Vllm 和 llamafactory-cli api 各自起了一下http 服务。拿 dify 试了一下,能不能用。

  • 点亮屏幕

    离开一段时间之后,再打开电脑,其中一个屏幕不亮。

    发现怎么让它亮了

    把鼠标盲移过去,移到另外一个不亮的屏幕

    感觉就激活了

    本来是不亮的,移过去就亮了。有时候会卡住一两秒,再继续移

  • 流水帐-周一

    在Dify上面添加了Rerank的步骤。但是关键点其实还是搜索匹配的文档:需要准而且全。

  • 做梦

    昨天想到,已经很久没有做过梦了,不知道是没有做,还是醒了就不记得了。

    今天早晨醒来,发现又是没有做梦。

    有些可惜,之前每天都做梦的,觉得很有趣,就像是多活了一次。

    然后,突然想起来,昨天晚上其实做梦了,梦里的情节一下子出来了。

    还好还好,还会做梦。

  • Docker To Podman Compose

    dockeer/docker-compose 切换到 podman/podman-compose 之后,compose 起不来了。

    中间各种查日志和资料不说,一个可能的原因是这样的(带猜测性质):

    是docker-compose 里面,如果不配置network,会使用default这个network。 但换到podman之后,没有default了(有一个叫podman的),所以就找不到network了。

    解决方法是在 docker-compose.yml 里面,每个 service 都加上network的配置。

    networks:

    • podman

    如果之前配置的 default networkd,换成 podman

  • Podman Compose Missing Networks

    Q: macos上,podman-compose启动失败,报错 “RuntimeError: missing networks: default”

    A: 根据搜索结果,Podman Compose 在某些情况下无法自动创建默认网络,需要在 docker-compose.yml 文件中显式定义默认网络。例如:

    version: '3.8'
    services:
      your_service:
        image: your_image
        networks:
          - default
    
    networks:
      default:
        driver: bridge
    
  • Vector Search

    https://medium.com/@vidiptvashist/building-a-vector-database-from-scratch-in-python-6bd683ba5171

    关键还是如何做 embedding。以及如何做相似度计算?

    后面看一下有哪些常用的embedding model 和算法。

    还有,代码中都是简单的字符串,如果特别长,怎么切片呢?这个参数是不是也重要?

    from typing import Any
    
    import numpy as np
    
    
    class VectorStore:
        def __init__(self):
            self.vector_data: dict[str, np.ndarray] = {}  # A dictionary to store vectors
            self.vector_index: dict[str, dict] = {}  # An indexing structure for retrieval
    
        def add_vector(self, vector_id: str, vector: np.ndarray):
            """
            Add a vector to the store.
    
            Args:
                vector_id (str or int): A unique identifier for the vector.
                vector (numpy.ndarray): The vector data to be stored.
            """
            self.vector_data[vector_id] = vector
            self._update_index(vector_id, vector)
    
        def get_vector(self, vector_id):
            """
            Retrieve a vector from the store.
    
            Args:
                vector_id (str or int): The identifier of the vector to retrieve.
    
            Returns:
                numpy.ndarray: The vector data if found, or None if not found.
            """
            return self.vector_data.get(vector_id)
    
        def _update_index(self, vector_id, vector):
            """
            Update the index with the new vector.
    
            Args:
                vector_id (str or int): The identifier of the vector.
                vector (numpy.ndarray): The vector data.
            """
            # In this simple example, we use brute-force cosine similarity for indexing
            for existing_id, existing_vector in self.vector_data.items():
                similarity = np.dot(vector, existing_vector) / (
                    np.linalg.norm(vector) * np.linalg.norm(existing_vector)
                )
                if existing_id not in self.vector_index:
                    self.vector_index[existing_id] = {}
                self.vector_index[existing_id][vector_id] = similarity
    
        def find_similar_vectors(self, query_vector, num_results=5):
            """
            Find similar vectors to the query vector using brute-force search.
    
            Args:
                query_vector (numpy.ndarray): The query vector for similarity search.
                num_results (int): The number of similar vectors to return.
    
            Returns:
                list: A list of (vector_id, similarity_score) tuples for the most similar vectors.
            """
            results: list[tuple[str, float]] = []
            for vector_id, vector in self.vector_data.items():
                similarity = np.dot(query_vector, vector) / (
                    np.linalg.norm(query_vector) * np.linalg.norm(vector)
                )
                results.append((vector_id, similarity))
    
            # Sort by similarity in descending order
            results.sort(key=lambda x: x[1], reverse=True)
    
            # Return the top N results
            return results[:num_results]
    
    
    # Establish a VectorStore instance
    vector_store = VectorStore()  # Creating an instance of the VectorStore class
    
    # Define sentences
    sentences = [  # Defining a list of example sentences
        "I eat mango",
        "mango is my favorite fruit",
        "mango, apple, oranges are fruits",
        "fruits are good for health",
    ]
    
    # Tokenization and Vocabulary Creation
    vocabulary: set[str] = set()  # Initializing an empty set to store unique words
    for sentence in sentences:  # Iterating over each sentence in the list
        tokens = (
            sentence.lower().split()
        )  # Tokenizing the sentence by splitting on whitespace and converting to lowercase
        vocabulary.update(tokens)  # Updating the set of vocabulary with unique tokens
    
    # Assign unique indices to vocabulary words
    word_to_index = {
        word: i for i, word in enumerate(vocabulary)
    }  # Creating a dictionary mapping words to unique indices
    
    # Vectorization
    
    # Initializing an empty dictionary to store sentence vectors
    sentence_vectors: dict[str, np.ndarray] = {}
    for sentence in sentences:  # Iterating over each sentence in the list
        tokens = (
            sentence.lower().split()
        )  # Tokenizing the sentence by splitting on whitespace and converting to lowercase
        vector = np.zeros(
            len(vocabulary)
        )  # Initializing a numpy array of zeros for the sentence vector
        for token in tokens:  # Iterating over each token in the sentence
            vector[
                word_to_index[token]
            ] += 1  # Incrementing the count of the token in the vector
        sentence_vectors[sentence] = (
            vector  # Storing the vector for the sentence in the dictionary
        )
    
    # Store in VectorStore
    for sentence, vector in sentence_vectors.items():  # Iterating over each sentence vector
        vector_store.add_vector(
            sentence, vector
        )  # Adding the sentence vector to the VectorStore
    
    # Similarity Search
    query_sentence = "Mango is the best fruit"  # Defining a query sentence
    query_vector = np.zeros(
        len(vocabulary)
    )  # Initializing a numpy array of zeros for the query vector
    query_tokens = (
        query_sentence.lower().split()
    )  # Tokenizing the query sentence and converting to lowercase
    for token in query_tokens:  # Iterating over each token in the query sentence
        if token in word_to_index:  # Checking if the token is present in the vocabulary
            query_vector[
                word_to_index[token]
            ] += 1  # Incrementing the count of the token in the query vector
    
    similar_sentences = vector_store.find_similar_vectors(
        query_vector, num_results=2
    )  # Finding similar sentences
    
    # Display similar sentences
    print("Query Sentence:", query_sentence)  # Printing the query sentence
    print("Similar Sentences:")  # Printing the header for similar sentences
    for (
        sentence,
        similarity,
    ) in similar_sentences:  # Iterating over each similar sentence and its similarity score
        print(
            f"{sentence}: Similarity = {similarity:.4f}"
        )  # Printing the similar sentence and its similarity score
    
  • 这不是有效沟通

    A: Deepseek 为什么成本这么低? B:我不懂。 A:你不懂?你们搞技术的应该都懂啊。 B:我不懂。 A:那你懂啥?

  • Shortcut Connection In Deep Nn

    In conclusion, shortcut connections are important for overcoming the limitations posed by the vanishing gradient problem in deep neural networks. Shortcut connections are a core building block of very large models such as LLMs, and they will help facilitate more effective training by ensuring consistent gradient flow across layers when we train the GPT model in the next chapter.

    总之,捷径连接对于克服深度神经网络中梯度消失问题带来的限制非常重要。快捷连接是超大型模型的核心构建块,例如LLMs,当我们在下一章训练 GPT 模型时,它们将通过确保跨层的梯度流一致来帮助促进更有效的训练。

    原理是什么?

    为什么梯度会消失,为什么捷径连接可以解决这个问题?

  • 认错

    我觉得人生过的顺畅一些的一个改变是,把第一反应从辩解(缺少正确逻辑的辩解)变成认错。